satellite dish



A satellite dish is a type of parabolic antenna designed with the specific purpose of transmitting signals to and/or receiving from satellites. A satellite dish is a particular type of microwave antenna. Satellite dishes come in varying sizes and designs, and are most commonly used to receive satellite television. The parabolic shape of a dish reflects the signal to the dish’s focal point. Mounted on brackets at the dish’s focal point is a device called a feedhorn. This feedhorn is essentially the front-end of a waveguide that gathers the signals at or near the focal point and ‘conducts’ them to a low-noise block downconverter or LNB. The LNB converts the signals from electromagnetic or radio waves to electrical signals and shifts the signals from the downlinked C-band and/or Ku-band to the L-band range. Direct broadcast satellite dishes use an LNBF, which integrates the feedhorn with the LNB. (A new form of omnidirectional satellite antenna, which does not use a directed parabolic dish and can be used on a mobile platform such as a vehicle, was recently announced by the University of Waterloo. [1]) Modern dishes intended for home television use are generally 43 cm (18?) to 80 cm (31?) in diameter, and are fixed in one position, for Ku-band reception from one orbital position. Prior to the existence of Direct broadcast satellite services, home users would generally have a motorised C-band satellite dish of up to 3 metres in diameter for reception of channels from different satellites. Overly small dishes can still cause problems, however, including rain fade and interference from adjacent satellites. Motorised satellite dishes are still popular with enthusiasts, and three competing standards, which are often all supported by a set-top box, DiSEqC, USALS, and 36v Positioners.


CSE PROJECTS

FREE IEEE PAPER AND PROJECTS

FREE IEEE PAPER