Pest Classification and Pesticide Recommendation System ijtsrd


Myanmar is an agricultural country and agriculture constitutes the largest sector of the economy. Recognizing of pests is a vital problem especially for farmers, agricultural researchers, and environmentalists. The proposed system is to classify the types of pest using the CNN model, which is often used when applying deep learning to image processing, and to recommend the most suitable pesticide according to the type of pest. This system will help to know easily information of pests and pesticides which should be used to the user. Using a public dataset of 1265 images of pests, a convolutional network and supervised methods are trained to classify four kinds of pest species and recommend the suitable pesticides.

by Myat Mon Kyaw | San San Nwe | Myint Myint Yee “Pest Classification and Pesticide Recommendation System”

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5 , August 2019,

URL: https://www.ijtsrd.com/papers/ijtsrd27899.pdf

Paper URL: https://www.ijtsrd.com/computer-science/data-processing/27899/pest-classification-and-pesticide-recommendation-system/myat-mon-kyaw

call for paper Environmental Engineering, international journal Simulation, ugc approved journals Water Resource Engineering




Pest Classification and Pesticide Recommendation System ijtsrd IEEE PAPER





2020 technology trends
2019-TOP-TECHNOLOGIES
2019 papers
2018-TOP-TECHNOLOGIES
2018 papers

IEEE PROJECTS 2019


IEEE PROJECTS CSE 2019
IEEE PROJECTS ECE 2019
IEEE PROJECTS EEE 2019
IEEE PROJECTS VLSI
IEEE PROJECTS EMBEDDED SYSTEM

IEEE PROJECTS


IEEE PROJECTS ECE
IEEE PROJECTS CSE COMPUTER SCIENCE
IEEE PROJECTS ELECTRICAL ENGINEERING
IEEE PROJECTS EEE

IEEE PROJECTS