Development of modern nanotecnologies and combined biotoxicity problems



Liliya Batyuk, Natalia Kizilova

Fast progress in modern nanotechnologies based on use of nanoparticles, nanofibers and nanotubes with different composition, shape and size allows elaboration of materials with superhigh strength, thermal and electric conductivity, acoustical and optical properties. Those materials are already widely used in industry, transportation, aerospace, marine and civil engineering, food processing and medicine. Some examples of nanoreinforces composites, superhydrophobic self-cleaning surfaces, nanodyes and suspensions of nanoparticles are described. The problem of uncontrolled accumulation of some types of nanoparticles in our cells and tissues is discussed within the concept of nanotoxicity. Since the history of permanent observation of human health in connection with nanodust accumulation in the atmosphere, waters and soils is not enough long, the detailed evidences must be documented, systematized and discussed.

In this study a brief systematic review of literature on the biotoxicity problems caused by modern nanotechnologies is given. Production of the nanoparticles, nanofibers and nanotubes for industry, transportation, food processing, as well as utilization of the used materials which properties were modified by the nanotechnologies leads to permanent rise of the nanodust in the atmosphere, soils, river waters, lakes and the sea bottom. Their uncontrolled interaction with flora and fauna could be catastrophic for human health and life on the Earth. Promising ways for the problem solution and perspectives are discussed. Some own results on the protective action of nanodiamonds, silver and some other nanoparticles are presented. A vital necessity of an open access database on known types of nanoparticles, their use in the materials and documented influence of health of animals and humans is discussed

FULL PAPER

How to cite paper:

Batyuk, L, , Kizilova, N, (2022). Development of modern nanotecnologies and combined biotoxicity problems. EUREKA: Life Sciences, 5, 38-46. doi:https://doi.org/10.21303/2504-5695.2022.002603