Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder



Do Duc Trung, Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article

FULL PAPER

How to cite paper:

Trung, D, , Ha, L, (2022). Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder. EUREKA: Physics and Engineering, 1, 93-102. doi:https://doi.org/10.21303/2461-4262.2022.002058