Networked control system stability analysis of pipeline system with networked-induced delay



Muhammad Ridho Rosa, Erwin Susanto, Mohd Fadzil Hassan

This paper presents the design of Networked Control Systems (NCS) for pipeline systems. NCS plays an important role in controlling and monitoring large-scale systems such as pipeline systems. To implement the NCS, one must derive the pipe model and consider the network communication constraints. Here, the pipeline model is divided into two sections for simplicity. For example, in a long pipeline system, one can use a higher number of sections in order to give a better result for the analysis. Then let’s consider a networked-induced delay as the network communication constraint. The discretize pipe dynamics model is derived to support the NCS scheme in the pipeline system. The stability analysis of the proposed NCS is derived by taking into account the small and the large networked-induced delay. Then the optimal LQR control is designed for both stabilizing and tracking. The stability region of the pipeline system in the NCS scheme with networked-induced delay is derived and depicted to provide stability information. The design of the proposed controller under network constraint (networked-induced delay) must consider the stability plot that is divided into the stable region and unstable region. In this research, let’s assume that it is possible to measure the exact time delay and then consider the allowable sampling time for the controller. The proposed controller is designed by considering the NCS scheme with time delay both for regulator and tracking problems. By using the proposed controller, the pipeline system can be controlled in the presence of network-induced delay, which commonly occurs in a distributed system. The simulation verifies the stability analysis of the proposed optimal control for the pipeline systems with the NCS scheme under networked induced delay

How to cite paper:

Rosa, M. R., Susanto, E., & Hassan, M. F. (2022). Networked control system stability analysis of pipeline system with networked-induced delay. EUREKA: Physics and Engineering, (6), 74-83. https://doi.org/10.21303/2461-4262.2022.002469